Search Results

Documents authored by Richard, Pascal


Document
Optimal Scheduling of Periodic Gang Tasks

Authors: Joël Goossens and Pascal Richard

Published in: LITES, Volume 3, Issue 1 (2016). Leibniz Transactions on Embedded Systems, Volume 3, Issue 1


Abstract
The gang scheduling of parallel implicit-deadline periodic task systems upon identical multiprocessor platforms is considered. In this scheduling problem, parallel tasks use several processors simultaneously. We propose two DPFAIR (deadline partitioning) algorithms that schedule all jobs in every interval of time delimited by two subsequent deadlines. These algorithms define a static schedule pattern that is stretched at run-time in every interval of the DPFAIR schedule. The first algorithm is based on linear programming and is the first one to be proved  optimal for the considered gang scheduling problem. Furthermore, it runs in polynomial time for a fixed number m of processors and an efficient implementation is fully detailed. The second algorithm is an approximation algorithm based on a fixed-priority rule that is competitive under resource augmentation analysis in order to compute an optimal schedule pattern. Precisely, its speedup factor is bounded by (2-1/m). Both algorithms are also evaluated through intensive numerical experiments.

Cite as

Joël Goossens and Pascal Richard. Optimal Scheduling of Periodic Gang Tasks. In LITES, Volume 3, Issue 1 (2016). Leibniz Transactions on Embedded Systems, Volume 3, Issue 1, pp. 04:1-04:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@Article{goossens_et_al:LITES-v003-i001-a004,
  author =	{Goossens, Jo\"{e}l and Richard, Pascal},
  title =	{{Optimal Scheduling of Periodic Gang Tasks}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{04:1--04:18},
  ISSN =	{2199-2002},
  year =	{2016},
  volume =	{3},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LITES-v003-i001-a004},
  doi =		{10.4230/LITES-v003-i001-a004},
  annote =	{Keywords: Real-time systems, Scheduling, Parallel tasks}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail